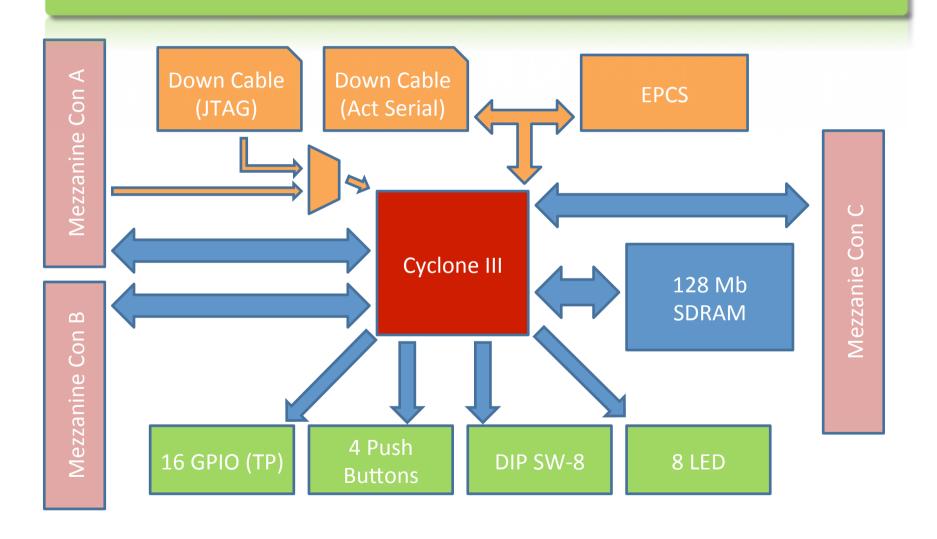
Status of the upgrade work in Valencia

Fernando Carrió

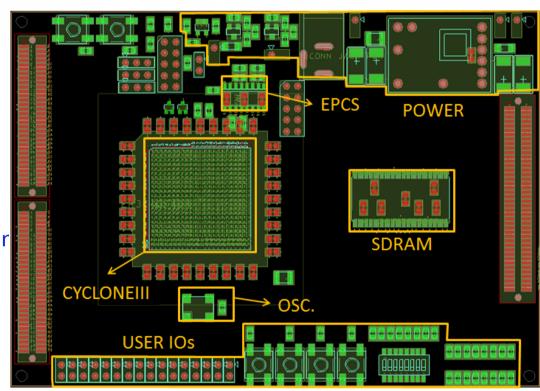
University of Valencia – IFIC LIP Lisbon

Contents


- Design of a FPGA-based PU Mezzanine Card
- GBT Activities
- Optical Link Card status

Design of a FPGA-based PU Mezzanine Card

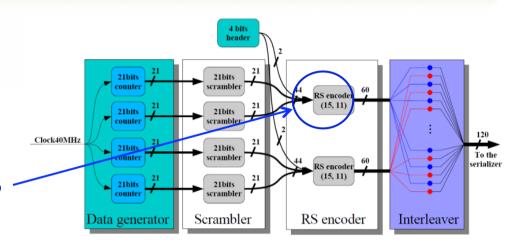
Motivation

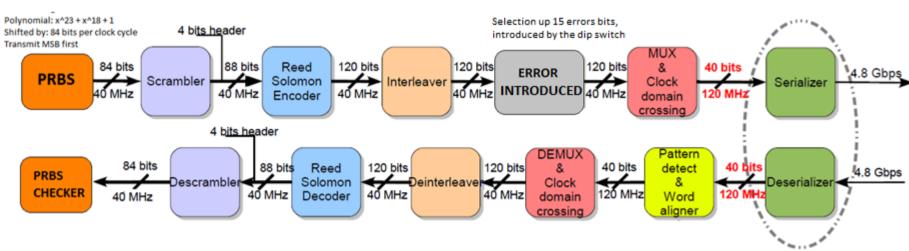

- Main goal: to develop a hardware platform to evaluate the performance of FPGAs in the implementation of OF using dedicated DSP blocks and explore extra capabilities like embedded processor systems to increase its functional possibilities.
- Its a prototype which let us gain some experience in the use of FPGAs for the current DSP PU tasks, as well as estimate its pros/cons in terms of performance, power consumption and complexity of the board.
- The platform will be a Mezzanine Card PU, based in a Altera Cyclone III and fully compatible with the present system.

The Cyclone III PU board

The Cyclone III PU board

- Cyclone III 40k 484 pin FPGA
- 128 Mbit SDRAM
- 64 Mbit EPCS flash
- 3 configuration schemes
- Standalone and plugged operating modes
- User IO: DIP switch, pushbuttons, leds and testpoir
- External 100 MHz oscillator
- 10 layers stack-up:
 - 6 signal layers
 - 4 power plane layers

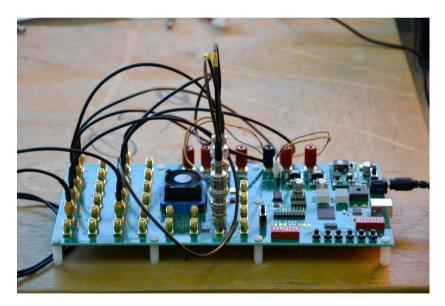

Status of the design


- ✓ Schematics
- ✓ Placement
- ✓ Stack-up, trace width and constraints definition
- Routing... 45%
- Manufacturing: June 2011
- Future work:
 - Electrical tests
 - Configuration tests
 - JTAG (standalone)
 - JTAG (motherboard)
 - Active Serial
 - Present system functional compatibility test
 - Extended functionality evaluation

GBT Activities

GBT Error correction tests

- PRBS generator & checker implemented:
 - Polynomial X²³+X¹⁸+1
 - 84bits@40MHz
 - Errors introduced in transmission chain (1 RS encoder)

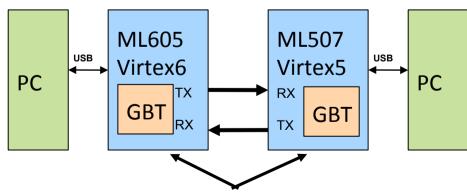


GBT Error correction tests

Preliminary results:

r reminiary results.				
# DATA BITS CHANGED ON RS Encoder1	Status	# FEC BITS CHANGED to obtain error		
1	Corrected	5		
2	Corrected	2 and > 4		
3	Corrected	4		
4	Corrected	5		
5	Corrected	4		
6	Corrected	2 or > 3		
7	Corrected	1		
8	Corrected	1		
9	Not corrected	0		
10	Not corrected	0		
11	Not corrected	0		
12	Not corrected	0		
13	Not corrected	0		
14	Not corrected	0		
15	Not corrected	0		

Conclusion: GBT protocol meets its specifications correcting up to 8 consecutive corrupted bits per RS block



Tested 6 GBT links with 8 bit errors per encoder for 24 hours.

Communication tests: inter-board and board-to-board (Valencia – Lisbon collaboration)

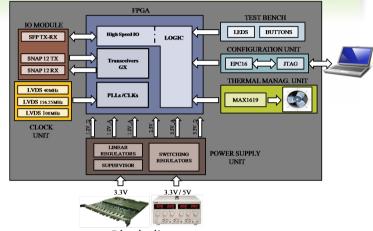
- ML605-Virtex-6 and ML507-Virtex-5 working full-duplex with no errors
 - Common clock from either board
 - Different clock from Stratix II GX Board
- Loopback GBT TX-RX implementation in Virtex-6 (up to 12 GBT links)
- Advantage of Virtex-6 over Virtex-5: transceiver instantiation is individual (less waste of resources)

Common clock (ML605, TileCal Week, 7-9 March 2011 ML507 or Stratix II GX)

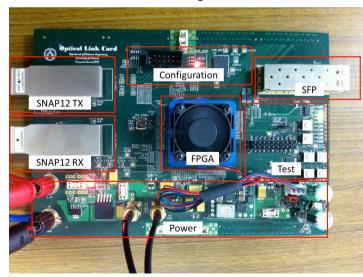
Optical Link Card status

Optical Link Card - Overview

Main devices:


- SNAP12 Transmitter/Receiver module (Link up to 75 Gbps)
 - SN-T12-C01001 / SN-R12-C01001
- SFP module (Link up to 1 Gbps)
 - V23818-M305-B57
- Altera Stratix II GX with 12 GX transceivers
 - EP2SGX60E

Physical card features:


- Size: 2 x PU position in ROD (174mm x 120mm)
- 12 layers
 - 6 power planes
 - 6 signal layers

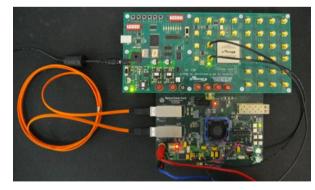
– Status:

- Electrical test done
- Maximum data bandwidth achieved
 - Total bandwidth 75Gbps
 - 6.25Gbps per channel
- GBT protocol implemented successfully

Block diagram

TileCal Week, 7-9 March 2011

Optical Link Card


OLC Tests

- Maximum data bandwidth
 - Raw data: 32 bit counter without protocol
 - 6.25Gbps per fiber
 - Data correlation with Altera Signal Tap
 - Total measured bandwidth of 75Gbps
 - Power consumption 11.71 W

OLC	1 GBT link	
ALLITA	1976	
ALUTs	4%	
Dedicated Logical Registers	1680	
Dedicated Logical Registers	3%	
Plack Mamony hits	2560	
Block Memory bits	0.1%	
DUL	PLLs 0.1%	
PLLS	12.5%	

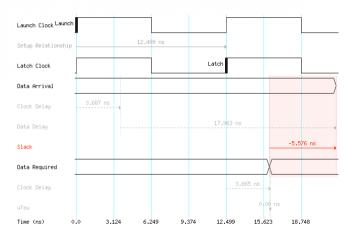
Resource occupation for 1 GBT link

- 1 link GBT protocol implementation
 - Power supply from external supply
 - Receiver and transmitter located in different GX transceiver block
 - 48 hours without errors
 - BER of $3.61 \cdot 10^{-15}$ with a confidence of 95%
 - Data rate of 4.8Gbps
 - Power consumption 7.128 W
 TileCal Week, 7-9 March 2011

OLC running 1 link GBT

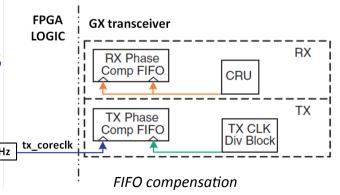
OLC Tests

- 12 links GBT protocol implementation
 - 12 link GBT protocol
 - Power supply from OMB
 - Receiver and transmitter located in different GX transceiver block
 - 24 hours without errors
 - Internal FIFO compensation needed
 - Due to violated setup and hold internal times
 - BER of 6.05·10⁻¹⁶ with a confidence of 95%
 - Total bandwidth of 57.6Gbps
 - Power consumption 14.025 W


OLC connected to OMB running 12 GBT links at 175

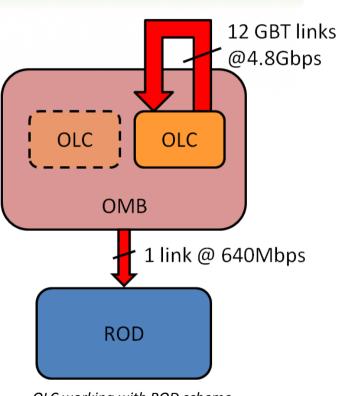
OLC	12 GBT links		
ALLITA	22953		
ALUTs	47%		
Dedicated Lagical Degisters	15917		
Dedicated Logical Registers	33%		
Diede Manage hite	30720		
Block Memory bits	1.2%		
DUL	1		
PLLs	12.5%		

Resource occupation for 12 GBT links


GBT implementation in OLC

- FPGA internal timing problems
 - Setup and hold times not meet requirements
 - Errors due to non-synchronization between logic and GX transceivers
 - Timing problems increase with the number of GBT links implemented

Violated setup timing diagram


- Solved with FIFO compensation
 - FIFO compensation between FPGA logic clock and GX transmitter fix this problem in OLC
 - Timing requirements not meet with GBT optimization

TileCal Week, 7-9 March 2011

Work ongoing - OLC working with ROD

- Test assembly
 - OLC connected to OMB as PU
 - OLC with SNAP12 connectors in loopback
 - OMB connected to ROD with G-link
- OLC purpose
 - Simulate Front End data and sends it to SNAP12 loopback
 - Send received simulated Front End data to OMB with Mezzanine connectors
- OMB purpose
 - Send simulated Front End data to ROD with a G-link channel

OLC working with ROD scheme

Thank you for your time

Backup Slides

GBT Error correction tests

ERROR	INTROD	UCED	INTERLEAN	/ER OUTPUT
Output	119	116<=	119	116 HEADER
Output	115	112<=	59	56 DATA RS1
Output	111	108<=	115	112 DATA RS2
Output	107	104<=	55	52 DATA RS1
Output	103	100<=	111	108 DATA RS2
Output	99	96<=	51	48 DATA RS1
Output	95	92<=	107	104 DATA RS2
Output	91	88<=	47	44 DATA RS1
Output	87	84<=	103	100 DATA RS2
Output	83	80 <=	43	40 DATA RS1
Output	79	76<=	99	96 DATA RS2
Output	75	72<=	39	36 DATA RS1
Output	71	68<=	95	92 DATA RS2
Output	67	64<=	35	32 DATA RS1
Output	63	60<=	91	88 DATA RS2
Output	59	56<=	31	28 DATA RS1
Output	55	52<=	87	84 DATA RS2
Output	51	48<=	27	24 DATA RS1
Output	47	44<=	83	80 DATA RS2
Output	43	40<=	23	20 DATA RS1
Output	39	36<=	79	76 DATA RS2
Output	35	32<=	19	16 DATA RS1
Output	31	28<=	75	72 FEC RS2
Output	27	24<=	15	12 FEC RS1
Output	23	20<=	71	68 FEC RS2
Output	19	16<=	11	8 FEC RS1
Output	15	12<=	67	64 FEC RS2
Output	11	8<=	7	4 FEC RS1
Output	7	4<=	63	60 FEC RS2
Output	3	0<=	3	0 FEC RS1

Bits to be changed in order to emulate transmission burst errors:

Up to 8 data bits and 7 FEC bits

Speed estimates in Virtex-6 for selected examples (ISE 12.4 IDE)

- Combinatoric Modules:
 4 x Reed-Solomon
 Decoder (4 modules is maximum possible due to # I/O pins.) Critical I/O path: 2.212 ns.
- Sequential module: 1 x
 Scrambler. Max. clock
 frequency ~800 MHz;
 delay 1.25 ns.

```
Total number of paths / destination ports: 3504 / 480
                                  2.212ns (Levels of Logic = 4)
                                  Input o<56> (PAD)
                 Source:
                 Destination:
                                  Output 0<73> (PAD)
                 Data Path: Input o<56> to Output 0<73>
                                           Gate
                                   fanout Delay Delay Logical Name (Net Name)
                    IBUF:I->0
                                                  0.876 Input o 56 IBUF
                (Input o 56 IBUF)
                    LUT6: I0->0
                                       1 0.068 0.775 transceivers instantiation
                [0].Inst Encoding/RSEncoder 83 42/polydivider inst/net<82><1>12
                (transceivers instantiation[0].Inst Encoding/RSEncoder 83 42/
               polydivider inst/net<82><1>11)
                    LUT6: I1->0
                                       4 0.068 0.419 transceivers instantiation
               [0].Inst Encoding/RSEncoder 83 42/polydivider inst/net<82>-1>14
                (Output 0 73 OBUF)
                    OBUF: I->0
                                           0.003
                                                        Output 0 73 OBUF
                (Output 0<73>)
                                                    .142ns logic, 2.070ns route)
                                                   6.4% logic, 93.6% route)
                ____
                Timing constraint: Default period analysis for Clock 'Clock
                 Clock period: 1.249ns (frequency: 800.641MHz)
                                  1.249ns (Levels of Logic = 1)
                 Source
                                  Scrambler 20 0/FREG 20 (FF)
                 Destination:
                                  Temp Output 20 (FF)
                 Source Clock:
                                  Clock rising
                 Destination Clock: Clock rising
                 Data Path: Scrambler 20 0/FREG 20 to Temp Output 20
                                            Gate
                   Cell:in->out
                                   fanout Delay Delay Logical Name (Net Name)
                                        4 0.375 0.795 Scrambler 20 0/FREG 20
                (Scrambler 20 0/FREG 20)
                    LUT5:I0->0
                                       1 0.068 0.000 Scrambler 20 0/dout s<21>1
                (Scrambled Word<20>)
                    FDC: D
                                           0.011
                                                        Temp_Output_20
                                           1.249ns (0.454ns logic, 0.795ns route)
                                                  (36.3% logic, 63.7% route)
TileCal Week.
                9 March 2011
```

Virtex-6 resources vs. # of full GBT links compiled in the device

5		1 LINK		2 LINKS		12 LINKS		Total Res.
6	# Slice Registers	734	0.24%	1382	0.46%	7818	2.59%	301440
7	# Slice <u>LUTs</u>	2045	1.36%	4084	2.71%	22336	14.82%	150720
8	# occupied slices	726	1.93%	1384	3.67%	8473	22.49%	37680
9	# RAMB36E1	4	0.96%	8	1.92%	48	11.54%	416
10	# RAMB18E1	21	2.52%	42	5.05%	152	18.27%	832
11	# GTXE1s	1	5.00%	2	10.00%	12	60.00%	20